(2x^2+2xy+y^2)dx+(x^2+2xy-y^2)dy=0

Simple and best practice solution for (2x^2+2xy+y^2)dx+(x^2+2xy-y^2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+2xy+y^2)dx+(x^2+2xy-y^2)dy=0 equation:


Simplifying
(2x2 + 2xy + y2) * dx + (x2 + 2xy + -1y2) * dy = 0

Reorder the terms:
(2xy + 2x2 + y2) * dx + (x2 + 2xy + -1y2) * dy = 0

Reorder the terms for easier multiplication:
dx(2xy + 2x2 + y2) + (x2 + 2xy + -1y2) * dy = 0
(2xy * dx + 2x2 * dx + y2 * dx) + (x2 + 2xy + -1y2) * dy = 0

Reorder the terms:
(dxy2 + 2dx2y + 2dx3) + (x2 + 2xy + -1y2) * dy = 0
(dxy2 + 2dx2y + 2dx3) + (x2 + 2xy + -1y2) * dy = 0

Reorder the terms:
dxy2 + 2dx2y + 2dx3 + (2xy + x2 + -1y2) * dy = 0

Reorder the terms for easier multiplication:
dxy2 + 2dx2y + 2dx3 + dy(2xy + x2 + -1y2) = 0
dxy2 + 2dx2y + 2dx3 + (2xy * dy + x2 * dy + -1y2 * dy) = 0
dxy2 + 2dx2y + 2dx3 + (2dxy2 + dx2y + -1dy3) = 0

Reorder the terms:
dxy2 + 2dxy2 + 2dx2y + dx2y + 2dx3 + -1dy3 = 0

Combine like terms: dxy2 + 2dxy2 = 3dxy2
3dxy2 + 2dx2y + dx2y + 2dx3 + -1dy3 = 0

Combine like terms: 2dx2y + dx2y = 3dx2y
3dxy2 + 3dx2y + 2dx3 + -1dy3 = 0

Solving
3dxy2 + 3dx2y + 2dx3 + -1dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(3xy2 + 3x2y + 2x3 + -1y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(3xy2 + 3x2y + 2x3 + -1y3)' equal to zero and attempt to solve: Simplifying 3xy2 + 3x2y + 2x3 + -1y3 = 0 Solving 3xy2 + 3x2y + 2x3 + -1y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-3xy2' to each side of the equation. 3xy2 + 3x2y + 2x3 + -3xy2 + -1y3 = 0 + -3xy2 Reorder the terms: 3xy2 + -3xy2 + 3x2y + 2x3 + -1y3 = 0 + -3xy2 Combine like terms: 3xy2 + -3xy2 = 0 0 + 3x2y + 2x3 + -1y3 = 0 + -3xy2 3x2y + 2x3 + -1y3 = 0 + -3xy2 Remove the zero: 3x2y + 2x3 + -1y3 = -3xy2 Add '-3x2y' to each side of the equation. 3x2y + 2x3 + -3x2y + -1y3 = -3xy2 + -3x2y Reorder the terms: 3x2y + -3x2y + 2x3 + -1y3 = -3xy2 + -3x2y Combine like terms: 3x2y + -3x2y = 0 0 + 2x3 + -1y3 = -3xy2 + -3x2y 2x3 + -1y3 = -3xy2 + -3x2y Add '-2x3' to each side of the equation. 2x3 + -2x3 + -1y3 = -3xy2 + -3x2y + -2x3 Combine like terms: 2x3 + -2x3 = 0 0 + -1y3 = -3xy2 + -3x2y + -2x3 -1y3 = -3xy2 + -3x2y + -2x3 Add 'y3' to each side of the equation. -1y3 + y3 = -3xy2 + -3x2y + -2x3 + y3 Combine like terms: -1y3 + y3 = 0 0 = -3xy2 + -3x2y + -2x3 + y3 Simplifying 0 = -3xy2 + -3x2y + -2x3 + y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 10u-5u=15 | | 3x/6-12=5 | | 9x+x^4= | | 3/4x10 | | 36x^3=121 | | 6x+3y+8z-2x+5z-6y= | | 100/n=20/40 | | 6(9+4h)= | | 6y-15x=48 | | -2(-4x+3)=2(x+6) | | 0.2x=.14 | | 3x(2)-2x+5=0 | | 2x-15=3x+47 | | (x+8)5=93 | | (x+5)8=93 | | 13/39=3/n | | 3/4•15 | | M/8=50 | | p/6-6=47 | | -12j-18+8j=20-6j | | 20/n=7/11 | | (X^7/x^4)^5 | | 1-8r=16-11r | | 3k^2-11k-144=0 | | 2+5=-22+x | | y=5.2x+18 | | -7c=-12-6c | | 7.9(p-3.7)=2.3 | | 3/8x=x-(30/8) | | 35y-40= | | 1600-400= | | -3h-7=4h |

Equations solver categories